

Дисциплина: «Устройство электровоза»

Предмет: «Электрические машины электровозов»

Группа: ПМЭ (помощник машиниста электровоза, подготовка)

Тема урока: «Условия работы и требования к ТЭД»

Преподаватель: Жуков Дмитрий Александрович 21 декабря 2017 года

Содержание учебного материала

Содержание учебного материала

Условия работы тягового двигателя и общие требования, предъявляемые к нему.

Мощность тягового двигателя и его КПД. Понятие о часовом и длительном режимах. Нагрев и вентиляция тягового двигателя. Классы изоляции по нагревостойкости.

<u>Обучающиеся должны знать</u>: отличия часового и длительного режимов.

Обучающиеся должны уметь: приобретать знания из различных источников.

Понятие о часовом и длительном режимах

<u>Часовый режим</u> — это режим работы ТЭД при номинальном напряжении и при часовом токе.

Часовый ток — это такой ток Іч, при работе с которым, начиная с холодного состояния (+25 °C) при исправной вентиляции, по истечении 1 ч изоляция всех обмоток двигателя нагревается до предельно допустимой температуры для данного класса изоляции.

<u>Часовая мощность</u> тягового двигателя определяется как произведение номинального напряжения (Uном) на ток часового режима (IЧ) и на КПД двигателя

$$P = Uhom * Iu * \eta$$

Понятие о часовом и длительном режимах

Длительный режим — это режим работы ТЭД при номинальном напряжении и при длительном токе.

Длительный ток это такой ток Ідл, при работе с которым ТЭД может работать длительно (более 10 ч) при исправной вентиляции. При этом изоляция всех его обмоток нагревается до предельно допустимой температуры (для данного класса изоляции) и далее температура изоляции повышаться не будет, так как наступит тепловое равновесие.

Длительная мощность тягового двигателя определяется как произведение номинального напряжения (Uном) на длительный ток (Ідл) и на КПД двигателя

Pдл = Uhom * Iдл * η

<u>Часовая мощность</u> – это мощность с которой двигатель через один час работы достигает предельной температуры нагрева, от чего может выйти из строя.

Продолжительная мощность — это такая мощность когда двигатель может работать без перегрева в течении длительного времени.

Основным параметром работы двигателя и его использования является <u>КПД</u> (коэффициент полезного действия), который определяется как отношение отдаваемой мощности к потребляемой: $\eta = \frac{P2}{D_{c}}$

<u>Потребляемая мощность</u> изменяется прямо пропорционально потребляемому напряжению и току:

$$P_I = U \cdot I$$

Отдаваемая мощность также изменяется прямо пропорционально потребляемому напряжению и току, но за минусом мощности, расходуемой на потери в двигателе: $P_2 = U \cdot I - \Delta P_{mad}$

- $\Delta P_{\textit{мех}}$ механические потери возникают в результате трения в якорных подшипниках, вентиляции, трении щеток; данные потери составляют 0,2% от мощности машины;
- $\Delta P_{\text{эл}}$ электрические потери возникают за счет омического сопротивления в обмотках якоря и за счет падения напряжения в щеточных контактах;
- $\Delta P_{\it Mar}$ магнитные потери возникают при перемагничивании стали сердечников полюсов и якоря;
- ΔP_∂ добавочные потери возникают от вихревых токов в меди из-за неравномерной индукции слоя якоря.

Мощности электровозов

ЭП1	ЧасоваяПродолжительная	4700 кВт 4400 кВт
ВЛ80С	ЧасоваяПродолжительная	6520 кВт 6160 кВт
29C5K	ЧасоваяПродолжительная	6560 кВт 6120 кВт
39C5K	Часовая Продолжительная	9840 кВт 9180 кВт

Нагрев и вентиляция тягового двигателя

В процессе работы электрической машины происходят необратимые изменения изоляции, которые называют ее старением. При этом изменяются прежде всего механические свойства изоляции: уменьшается прочность (она становится хрупкой) и образуются трещины (наличие которых снижает ее электрическую прочность). Вследствие этого может возникнуть пробой изоляции, после чего электрическая машина требует капитального ремонта.

Главные причины старения изоляции — это высокая темпера тура токоведущих частей машины, значительные перепады температур от детали к детали, действие электрического поля, наличие повышенной влажности и механических нагрузок на изоляцию.

Высокая температура вызывает окисление лаков, входящих в состав изоляции, вследствие чего снижается ее механическая прочность и образуются трещины, по которым при наличии влаги и загрязнения появляются токопроводящие дорожки, способствующие пробою изоляции. Поэтому для обеспечения заданного срока службы электрических машин температура нагрева их отдельных частей не должна быть больше допустимой.

Нагрев и вентиляция тягового двигателя

Предельно допустимые превышения температуры, °С, деталей электрических машин

	Классы изоляции				
Элементы машины	A	Е	В	F	Н
Обмотки якоря, соединенные с коллектором, и обмотки пере- менного тока	60	75	80	100	125
Многослойные обмотки возбуж- дения машин постоянного и пе- ременного тока	60	75	80	100	125
Однорядные обмотки возбужде- ния с оголенными поверхно- стями	65	80	90	110	135
Сердечники и другие стальные элементы, соприкасающиеся с изолированными обмотками	60	75	80	110	125
Коллекторы и контактные кольца	60	70	80	90	100

Нагрев и вентиляция тягового двигателя

По способу охлаждения ТЭД классифицируются на:

- 1. С принудительной независимой вентиляцией.
- 2. С принудительной зависимой вентиляцией.
- 3. С самовентиляцией.
- 4. С естественной вентиляцией.

Двигатели с самовентиляцией применяются преимущественно на электропоездах, а также для городской тяги (трамваи, троллейбусы и т.п.) и в вагонах метро.

Двигатели с независимой вентиляцией используются главным образом на магистральных локомотивах. При этом применяются исключительно нагнетательные вентиляторы. Забор воздуха извне происходит при этом через особые пылеулавливающие приспособления.

Дисциплина: «Устройство электровоза»

Предмет: «Электрические машины электровозов»

Группа: ПМЭ (помощник машиниста электровоза, подготовка)

Тема урока: «Условия работы и требования к ТЭД»

Преподаватель: Жуков Дмитрий Александрович 21 декабря 2017 года

